Thyroid-Stimulating Hormone Increases HNF-4α Phosphorylation via cAMP/PKA Pathway in the Liver

نویسندگان

  • Yongfeng Song
  • Dongmei Zheng
  • Meng Zhao
  • Yejun Qin
  • Tingting Wang
  • Wanjia Xing
  • Ling Gao
  • Jiajun Zhao
چکیده

Hepatocyte nuclear factor-4 alpha (HNF-4α) is an orphan nuclear receptor with important roles in hepatic metabolism. Protein phosphorylation plays a functional role in its nuclear localization, DNA binding, and transactivation. Thyroid-stimulating hormone (TSH) is a hormone produced by the anterior pituitary gland, whose direct effect on the metabolic pathway has been observed. Our previous study demonstrated that TSH significantly decreases hepatic nuclear HNF-4α expression. However, whether TSH can influence HNF-4α phosphorylation is unclear. Here, we discovered that TSH can increase HNF-4α phosphorylation and modulate its subcellularlocalization. When HepG2 cells were treated with TSH, the phosphorylation of HNF-4α increased and its nuclear localization was interrupted. Cytoplasmic HNF-4α increased, while nuclear HNF-4α decreased. When the cAMP/PKA pathway was inhibited by the PKA inhibitor H89 and the adenylate cyclase (AC) inhibitor SQ22536, the TSH-mediated phosphorylation of HNF-4α was disrupted. When Tshr was silenced in mice, the phosphorylation of HNF-4α decreased, and cytoplasmic HNF-4α decreased while nuclear HNF-4α increased. In conclusion, our study revealed a novel mechanism by which TSH regulated the hepatic HNF-4α subcellular localization, suggesting the possibility that one of the effects of TSH is to reduce the expression of HNF-4α target genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of High Intensity Interval Training on HNF-4 α Gene Expression in Liver Tissue of Type 2 Diabetic Male Wistar Rats

Objective: This study examined the effect of high intensity interval training (HIIT) on HNF-4α gene expression, glucose and insulin in liver tissue of type 2 diabetic male Wistar rats. Materials and Methods: In this study, 20 male Wistar rats weighing 220 (±20) grams were selected. After type 2 diabetes (T2D) induction, the samples were divided into two groups of HIIT and control. The training...

متن کامل

New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells.

The glycoprotein hormones, ACTH, TSH, FSH, and LH regulate diverse functions in endocrine cells. Although cAMP and PKA have long been shown to mediate specific intracellular signaling events including the transcription of specific genes via the CREB-CBP complex, recent observations have indicated that PKA does not account for all of the intracellular targets of cAMP. For example, TSH stimulatio...

متن کامل

Thyroid transcription factor 1 phosphorylation is not required for protein kinase A-dependent transcription of the thyroglobulin promoter.

Thyroid transcription factor 1 (TTF1) is a nuclear homeodomain protein that binds to and activates the promoters of several thyroid-specific genes, including that of the thyroglobulin gene (pTg). These genes are also positively regulated by thyroid-stimulating hormone/cyclic AMP (cAMP)/protein kinase A (PKA) signaling. We asked whether PKA directly activates TTF1. We show that cAMP/PKA activate...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177.

Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular my...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015